Content

119 – 125
Design of Double-row Magnetic Cycloid Gearbox
Juraj Bezák, Peter Bezák, Alena Vajdová

126 – 130
Briquettes Made from Wood Residues
Milan Brožek

130 – 136
Analysis of CT Stress during Horizontal Annular-Delivery Sand Fracturing
Feng Fuping, Ai Chi, Yu Fahao, Wang Yishan, Zhou Junran, Guo Chao

136 – 143
Millling Stability Prediction on Small Radial Immersion – Comparison SD Method and ZOA Method
Yunlin Huang, Juntang Yuan

143 – 148
Investigation of Vertical Vibration of a Vehicle Vodel Driving Through a Horizontal Curve
Frantisek Klimenda, Martin Svoboda, Lenka Rychlikova, Alena Petrenko

148 – 155
The Influence of Heat Treatment on Mechanical and Corrosion Properties of Wrought Aluminium Alloys 2024 and 6064
Tomáš Kovalčík, Jan Stoulil, Peter Sláma, Dalibor Vojtěch

155 – 161
Thermally Stable Al-Fe Based Alloys Produced from Secondary Materials
Jan Kříž, Pavel Novák

161 – 166
Deformation Zone Distribution of Continuous Extrusion Process
Yong Li, Yuxin Zhang, Shiqiang Cui, Ruizhu Zhang, Yi Zhong

166 – 170
Improving the Hydrogen Release Capacity of NaBH4 via Mediation of Catalysts with Rare Metal Compounds
Yong Li, Yuxin Zhang, Yuefei Cai, Xueping Zheng, Ruizhu Zhang

170 – 176
Machining Process & Information Modeling Based on MBD Procedure
Machining Cell
Linlin Liu, Rong Mo, Neng Wan

177 – 183
Polishing of CVD Diamond Films in Vacuum
Yongtao Ma, Yanmin Li, Zhanshu He

183 – 188
Research of Loading of Structural Bonds Created with One-Component Epoxy Adhesives
Miroslav Müller, Jan Cidlina

188 – 191
Influence of Cutting Tool Overhangs at Machining of Hardened Steels
Karel Osička, Zuzana Fišerová, Jan Otoupalík

191 – 195
Wear Simulation Modeling by Using the Finite Element Method
Zoran Pelagić, Martin Nágeš, Milan Zminčák, Daniel Riecky

195 – 204
Production Method of Implant Prototype of Knee-Joint Femoral Component
Josef Sedlák, Martin Slany, Zdenek Fiala, Ales Jaros

204 – 209
Setup System of Selective Roll Cooling Based on Profile Prediction in Aluminium Hot Strip Mill
Jian Shao, Chihuan Yao, Wenquan Sun Anrui H

210 – 214
Comparison of the Continuous and Intermittent Relaxation Test
Vladimir Sleger, Cestmir Mizera
Content

214 – 219
Microstructure and Mechanical Properties of the Forged Mg-Gd Alloy
Xu Sun, Zhanyi Cao, Shurong Sun, Yongbing Liu

220 – 226
Research on Distribution of Residual Stresses of Cold Rolled Sheet Distorted Area Based on ANSYS
Wenquan Sun, Jian Shao, Anrui He, Pujun Hao

226 – 231
Effect of Impacts on Human Head
Martin Svoboda, Josef Soukup, Karel Jelen, Petr Kubový

232 – 237
Properties of Adhesives Used for Connecting in Automotive Industry
Petr Valášek, Miroslav Müller

238 – 242
Preparation of Ultra-Fine Grained Alloys Based on Fe-Al-Si And Ti-Al-Si Intermetallic Compounds by Powder Metallurgy Using the Mechanical Alloying
Jiří Vystrčil, Pavel Novák, Alena Michalcová

243 – 249
Study on Mechanical Properties of the Composite Resin Matrix Fiber Reinforced
Min Wen, JiXiang Luo

249 – 254
Design and Implement of Infrared Thermography Detection System Excited by Pulsed Flash Lamp
Zheng-Wei Yang, Qian Luo, Gan Tian, Wei Zhang, Jie-Tang Zhu

254 – 260
Studies of Turbidity in the Ultrasonic/Ceramic Membrane Combined Process
JiLun Yao, Bin Xie, Yuzheng Lv

APRIL 2015, Vol. 15, No. 2 – INTERNATIONAL REVIEWERS AND EDITORS LIST

Technology and Assembly
Pavel Bach
Jiri Hruby
Josef Chladil
Miroslav Muller
Natasa Naprstkova
Martin Novak
Dana Stancekova
Karol Vasilko

Material Engineering and Design
Milan Chalupa
Ivan Lukac
Milos Mician
Iva Nova
Pavel Novak
Stefán Segla
Josef Soukup
Milan Zmindak

New web portal of Manufacturing Technology Article Administration. More information on home page of the journal.

home page
http://journal.strojirenskatechnologie.cz/

indexed on databases
Design of Double-row Magnetic Cycloid Gearbox

Juraj Bezák1, Peter Bezák1, Alena Vajdová2
1Department of Design and Mechanical Elements, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic; E-mail: juraj.bezak@fstroj.uniza.sk, peter.bezak@fstroj.uniza.sk
2Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic; E-mail: alena.vajdova@fstroj.uniza.sk

The paper deals with the issue of magnetism and its use in mechanical engineering as well as in other industries. Transmission systems are rather frequently present in almost every technical system. The purpose of each transmission system is to transform energy, based on which its quality can be assessed. The main objective of this paper is the structural design of a magnetic cycloid gearbox, a detailed description of transmission kinematic analysis, elaboration of calculation models for FEM analyses consisting of the analysis of gearing power relations and calculation of maximum torque the gearing is able to transform.

Keywords: magnetic transmission, kinematic equations, stress analysis, gearset, cycloid gearbox

Acknowledgement

This paper has been supported by the Scientific Grant Agency VEGA of the Ministry of Education. Project registration No.: 1/0881/11, Project title: Research into magnetic coupling of co-engagement of transmission gear.

References

Paper number: M201521
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.
Briquettes Made from Wood Residues

Milan Brožek
Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague. Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic. E-mail: brozek@tf.czu.cz

At logging and at the subsequent wood and wood semi-products treatment and also at fruit trees treatment the fine grained loose waste is arising, e.g. wood dust, saw dust, shavings, chips, bark etc. One of possibilities of its meaningful utilization is the briquetting technology, which product are briquettes determined for energetic utilization (combustion). In the paper the experimental results are published. The briquettes quality evaluation was their aim. For the tests pine bark chips, fir chips, spruce shavings, spruce sawdust, apple chips and cherry chips were used. The basic physical-mechanical properties were the evaluation criteria. Following properties were determined: ash amount, gross calorific value, total moisture content, density, rupture force, length, diameter, weight and mechanical durability.

Keywords: wood, briquetting, wood briquettes, density, rupture force

References

Analysis of CT Stress during Horizontal Annular-Delivery Sand Fracturing

Feng Fuping1, Ai Chi 1, Yu Fahao1, Wang Yishan2, Zhou Junran2, Guo Chao2
1Northeast Petroleum University, Daqing 163318, China. Email:fengfuping2005@163.com
2Engineering Technology Research Institute of Bohai Drilling Engineering Co, Ltd, CNPC, Tianjin 300457, China

Corresponding Author

The CT-conveyed hydrajet perforating and annular-delivery sand fracturing in horizontal well can meet the requirements of large-scale stimulated reservoir volume and separate-layer multistage fracturing. So it is always as an effective technique to stimulate low and ultra-low permeability reservoirs. Unfortunately, in the process of annular-delivery sand fracturing, the CT will endures a larger piston force, the accuracy of fractured intervals and the security of fracturing string can’t be guaranteed. In this paper, with the method of mechanical analysis on horizontal CT and numerical simulation on packer’s anchorage force, we obtain the effect of CT pump rate on its stress: When CT pump rate is smaller, the maximum axial and Von Mises stress happen at the CT bottom, where there exists a risk of strength failure; As CT pump rate increases, axial stress and Von Mises stress decreases gradually; The maximum safety factor can be obtained at the CT critical pump rate. Therefore, for annular-delivery sand fracturing, we’d better insure CT pump rate more than the critical value.

Keywords: coiled tubing; annular-delivery sanding; critical pump rate; string stress; horizontal well

Acknowledgments

The paper is supported by Science and technology project of China National Petroleum Corporation (Research and development on working fluid and key tools of reservoir stimulation, No: 2013E-3807-01)

References

Paper number: M201523

Copyright © 2015. Published by Manufacturing Technology. All rights reserved.

indexed on: http://www.scopus.com
Milling Stability Prediction on Small Radial Immersion – Comparison SD Method and ZOA Method

Yunlin Huang, Juntang Yuan
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
E-mail: mashuangyunlin@163.com, mc106@mail.njust.edu.cn

Stability lobe diagram predicted by the zeroth-order approximation (ZOA) method and the semi-discretization (SD) method were compared. The methods yielded similar predictions for high radial immersions under the specified cutting parameters and the cutting tool modal properties. As radial immersion was decreased, the disagreement between the predictions of the two methods grew. For very low radial immersions, the predicted lobe diagram differed considerably. The most prominent difference was an additional set of lobes corresponding to the new type of instability, the period doubling bifurcation which was predicted only by the SD method. Numerical simulation verification of the stability boundaries confirmed that the predictions of the SD were more accurate than those of the ZOA method.

Keywords: Milling stability, Lobe diagram, Small radial immersion, SD method, ZOA method

Acknowledgement

The authors gratefully acknowledge the technical and financial support of the science and technology major projects "High-end CNC machine tools and basic manufacturing equipment" (number: 2010 zx04014-051) granted by the Ministry of Science and Technology.

References

Investigation of Vertical Vibration of a Vehicle Model Driving Through a Horizontal Curve

Frantisek Klimenda, Martin Svoboda, Lenka Rychlikova, Alena Petrenko
Faculty of Production Technology and Management, J. E. Purkyne University in Usti nad Labem. Na Okraji 1001, 400 01 Usti nad Labem. Czech Republic. E-mail: klimenda@fvtm.ujep.cz

The article deals with the problem of vertical vibration of vehicle model driving a horizontal curve of radius $R = 100$ m. A brief theoretical work on the topic is presented in the introduction part. Where a descriptions of the forces acting on the vehicle while passing through the curve are discussed. In the second part of this work, a detailed description of the vehicle model is given. The equations of motion of the vehicle model are then derived for vertical dynamic response of the mechanical system considered herein. Analysis of the effect of asymmetry is then performed when the vehicle is driving the curve at a constant speed $v = 30$ km/h, excited by general kinematic excitations. Firstly, the asymmetrical model is considered and the results are then compared to a fully symmetrical model.

Keywords: Vibration, Horizontal Curve, Vehicle Model, Equations of Motion

Acknowledgement

The research work is supported by the SGS – UJEP, Czech Republic.

References

The Influence of Heat Treatment on Mechanical and Corrosion Properties of Wrought Aluminium Alloys 2024 and 6064

Tomáš Kovalčík, Jan Stoulil, Peter Sláma, Dalibor Vojtěch
1Department of Metals and Corrosion Engineering, Institute of Chemical Technology in Prague, Prague 166 28, Czech Republic. Email: t.kovalcik@email.cz, stoulilj@vscht.cz, vojtechd@vscht.cz
2COMTES FHT, a. s., Průmyslová 995, 334 41 Dobřany, Czech Republic. Email: pslama@comtesfht.cz

This article deals with the influence of the alloy temper during heat treatment on mechanical and corrosion properties of aluminium alloys 2024 (Al-Cu-Mg) and 6064 (Al-Mg-Si). For the experiment initial alloy tempers 2024-T351 and 6064-T8 were heat treated to three conditions – underaged, peak aged (T6) and overaged – to simulate the circumstances during the manufacturing process. Structure of all conditions and tempers was observed. The mechanical properties – hardness, yield strength, ultimate strength and elongation – and corrosion properties – maximum depth of corrosion attack penetration and corrosion rate in Audi immersion test for automotive industry (internal standard PV 11 13) – were measured. Structures of investigated alloy show evidence of intermediate phases arrangement in the direction of plastic deformation and they do not change during heat treatment. The lowest hardness, yield strength and ultimate strength have the underaged samples, the highest hardness, yield strength and ultimate strength have peak aged (2024) or initial samples (6064). Elongation decreases with ageing time or ageing temperature. In case of alloy 2024 corrosion rate and maximum depth of corrosion attack penetration increases with ageing time or temperature, in case of alloy 6064 corrosion rate increases with increasing ageing time or temperature while maximum depth of corrosion attack penetration decreases. Both alloys are attacked by intergranular corrosion with initiating surface pits.

Keywords: Aluminium alloys, heat treatment, precipitation hardening, corrosion and mechanical properties.

References

indexed on: http://www.scopus.com

Thermally Stable Al-Fe Based Alloys Produced from Secondary Materials

Jan Kříž, Pavel Novák
University of Chemistry and Technology, Prague, Department of Metals and Corrosion Engineering, Technická 5, 166 28 Prague 6, Czech Republic, krizj@vscht.cz, panovak@vscht.cz

Aluminium alloys are characterized by favourable properties, e.g. low density, specific tensile or electric and thermal conductivity. The problem with conventional aluminum alloys is their low thermal stability. According to previous published work, transition metals such as e.g. iron, chromium or nickel, increase the thermal stability. These metals are often found in aluminum waste as undesirable contamination. In this work, the alloys made of aluminum and cast iron or stainless steel were tested, simulating aluminum waste with a high iron content. The materials were prepared by powder metallurgy – method of rapidly solidified particles. The results showed that these alloys exhibit excellent thermal stability.

Keywords: aluminium, recycling, powder metallurgy

Acknowledgement
This research was carried out with the financial support of the Czech Science Foundation, project P108/12/ G043.

References

Paper number: M201527
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.
Deformation Zone Distribution of Continuous Extrusion Process

Yong Li¹, Yuxin Zhang¹, Shiqiang Cui², Ruizhu Zhang¹, Yi Zhong³
¹Dept. of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450045, China. E-mail: liyong@ncwu.edu.cn, zyx@ncwu.edu.cn, zhangruizhu@ncwu.edu.cn
²School of Materials Science and Engineer, Shanghai University, Shanghai, 200444, China. E-mail: cuishiqiang@shu.edu.com
³Kunming University of Science and Technology, Kunming, Yunnan, 650093, China. E-mail: liongkm@163.com

Experiments and numerical simulations were conducted to analyze the deformation zone of aluminum cable in the conform extrusion process, and complex metal flow is observed by finite element. In this report, detailed studies were especially focused on the width of the extruding dies mouth and leakage gap which influenced on the metal deformation, then the stress and strain distribution and contact force distribution of arbitrary step were obtained with respect to different technical parameters among random steps. Furthermore, the relationship between the parameters of Δh and W/H was given, indicating that the intense internal Shear Band-IISB and leak gap affect the metal forming behavior, and enlarge obviously plastic deformation zone in a certain range. Consequently, it's proper to be helpful for metal homogeneous deformation to reduce the entrance width of the extruding mold.

Keywords: Continuous extrusion, Deformation Zone Distribution, Mold Parameters

Acknowledgments

This work was supported by the National Youth Science Foundation of China (Grant No. 11404112). This paper was also supported by the college students’ innovative project of North China University of Water Resources and Electric Power in 2014.

References

indexed on: http://www.scopus.com

Improving the Hydrogen Release Capacity of NaBH₄ Via Mediation of Catalysts with Rare Metal Compounds

Yong Li¹, Yuxin Zhang¹, Yufei Cai¹, Xueping Zheng², Ruizhu Zhang¹
¹Dept. of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450045 China. E-mail: liyong@ncwu.edu.cn, zyx@ncwu.edu.cn, cyf2012ck@163.com, zhangruizhu@ncwu.edu.cn
²Chang’an University, Xi’an, Shanxi 710061, China. E-mail: liongkm@163.com

This paper reports on doping with the catalysts consist of rare metal compounds like Co₂B, La(NO₃)₃, Ce(SO₄)₂, Ti(SO₄)₂, CeCl₃, LaCl₃ and mixed catalysts for improving hydrogen release capacity of NaBH₄. The results show that the hydrogen generation volume (HGV) is about 10ml and the hydrogen generation rate (HGR) is very low when doping with La(NO₃)₃, Ce(SO₄)₂, Ti(SO₄)₂, CeCl₃ and LaCl₃. Comparatively, Co₂B presents favorable catalytic effect on hydrogen generation properties of NaBH₄. The study on the mixed catalysts find that the HGV of the samples doped with mixed catalyst of Co₂B and Ce(SO₄)₂ is the largest. Among all doped samples, the HGV of sample doped with 5Co₂B/2Ce(SO₄)₂ is the largest about 317ml. Compared to all samples doped with mixed catalysts, the samples doped with mixed catalysts of Co₂B, Ce(SO₄)₂, Ti(SO₄)₂ and CeCl₃ presents the best properties of hydrogen release. However, compared to Co₂B, doping with other catalysts makes the hydrogen release time of NaBH₄ longer. Overall, NaBH₄ doped with the mixed catalysts of Co₂B, Ti(SO₄)₂ and CeCl₃ present the optimal HGV and HGR than doped with any other catalysts.

Keywords: Hydrogen Release Capacity, Rare Metal Compounds, Mixed Catalysts, Catalytic Effect

Acknowledgments

This research was supported by the National Youth Science Foundation of China (Grant No. 11404112). This paper was also supported by the college students innovation project of North China University of Water Resources and Electric Power in 2014.

References

indexed on: http://www.scopus.com

Machining Process & Information Modeling Based on MBD Procedure Machining Cell

Linlin Liu¹,², Rong Mo¹, Neng Wan¹
¹The key laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi’an, 710072, Shanxi, China. E-mail: liulinlin1978@gmail.com, morong@nepu.edu.cn, wanneng@nepu.edu.cn
²Institute of Printing and Packing Engineering, Xi’an University of Technology, Xi’an, 710048, Shanxi, China. E-mail: liulinlin1978@gmail.com

To describe the machining process and information of mechanical parts in petroleum engineering, the paper defines MBD machining process model from the perspective of process parts; analyzes evolutionary law of geometric features information in the course of part machining process and creates the concept of procedure machining cell; makes clear description about machining process based on procedure machining cell sequence to achieve the expression of machining process information; analyzes geometric features of procedure machining cell, proposes extended AAG based on AAG by combing with examples and links with attribute information table to complete the modeling of geometric and non-geometric features information about procedure machining cell. The research made in this paper provides a basic framework for integration of process information in 3D CAPP system.

Keywords: MBD, Machining process, Procedure machining cell, Information modeling

Acknowledgement

The author gratefully acknowledges the support of the National Natural Science Foundation of China (Grant No.51375395), China Postdoctoral Science Foundation (2014M552484), Natural Science Foundation of Shaanxi Province (2014JM8334), Science Foundation of Shaanxi Educational Department (Natural Science 2013jk0996), and Science Foundation of Xi’an University of Technology (104-211106).

References

Polishing of CVD Diamond Films in Vacuum

Yongtao Ma, Yanmin Li, Zhanshu He
School of mechanical engineering, Zhengzhou University, Science Road 100, Zhengzhou, China, 450001 E-mail: myt@zzu.edu.cn, ymli64@zzu.edu.cn, hezhanshu@zzu.edu.cn

An efficient polishing process has been carried out at the polishing speed about 200 mm/s in vacuum with temperature of 850˚C. With the polishing time reaches 120min, the surface roughness of polished could get to Ra0.016 compared to original Ra9.67. Mass loss rate per hour was used to quantify the polishing efficiency. Increasing the polishing pressure could get high mass loss rate, which could be used in the rough machining process. In fine machining process, the polishing pressure should be lower and the high polishing speed should be remained. The 3D morphology from atomic force microscope(AFM) shows there are some summits about 30-40nm in height, and the summits take into the shape of directional narrow cone.

Keywords: CVD diamond, Polishing, Vacuum

Acknowledgments
This work was supported by the National Natural Science Foundation of China [Grant number 51305136].

References

Copyright © 2015. Published by Manufacturing Technology. All rights reserved.
Research of Loading of Structural Bonds Created with One-Component Epoxy Adhesives

Miroslav Müller, Jan Cidlina
Faculty of Engineering, Czech University of Life Sciences Prague. Czech Republic. E-mail: muller@tf.czu.cz, cidlina@tf.czu.cz.

An adhesive bonding technology is a method of a connecting which is used at a construction of coach-works, agricultural machines etc. This method is suitable for workings with a serial production. Many research projects dealt with a preparation of adhesive bonds, degradation aspects etc. An area, which has not been properly investigated at present, is an influence of a loading speed on strength of the adhesive bond and a destruction time of the adhesive bond. Adhesive bonds are loaded by a different intensity and a speed at a practice.

The research focused on an evaluation of the influence of the loading speed at a temperature 22 ± 2 °C on the shear tensile strength, the time needed for the destruction and a failure area. Second part of the research was focused on the influence of a bending moment. This bending moment can be minimalized by using so-called underlaying sheet of metal. The underlaying sheet of metal was of a thickness corresponding to a thickness of the adhesive bonded material. Also a behaviour of the adhesive bonded material was observed within the research.

Keywords: Adhesive bond, bending moment, loading speed, time

Acknowledgement

This paper has been done when solving the grant IGA TF (No.: 2014:31140/1312/3133).

References

Influence of Cutting Tool Overhangs at Machining of Hardened Steels

Karel Osička, Zuzana Fišerová, Jan Otupalík
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno. Czech Republic.
E-mail: osicka@fme.vutbr.cz, y146256@stud.fme.vutbr.cz, y146257@stud.fme.vutbr.cz

This article builds on existing results of testing hardened steel bearing ring machining. Grinding technology is preferably used for this area as a standard. Turning with cubic boron nitride has been used as an alternative machining technology. Results indicate that in mass production the values accuracy of degree IT 4 can be achieved. Arithmetic mean deviation of the profile is then in the range of Ra = 0.2 - 0.4 µm. During testing several kinds of cubic boron nitride material were used. The material that showed best results was chosen for further experiments. Subsequently it was tested under different cutting conditions on two types of machine tools. It was tested cutting in smaller range of depth of cut and wider feed values. The resulting feedrate and cutting depth which correspond to best result of arithmetic mean deviation of the profile Ra were selected from those tests. Subsequently, the testing was carried out at various cutting speeds and particularly at two different sizes of tool overhangs.

Keywords: hardened steel, CBN, cutting inserts, cutting speed

Acknowledgement

The work has been supported by the Department of Trade and Industry of the Czech Republic under grant FR–TI4/247. The support gained from this source is very gratefully acknowledged.

References

Paper number: M201533
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.
Wear Simulation Modeling by Using the Finite Element Method

Zoran Pelagić¹, Martin Nágeľ¹, Milan Žmindák¹, Daniel Riecky²
¹Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26, Slovak Republic, Email: zoran.pelagic@fstroj.uniza.sk, martin.nagel@gmail.com, milan.zmindak@fstroj.uniza.sk,
²Plastic Omnium Auto Exteriors, Ltd., Slovak Republic, Email:daniel.riecky@plasticomnium.com

We can define wear as a phenomenon, which humanity can’t fully explain and many do not understand it well. It is known for several millennia. It’s an action, which can’t be avoided. Often it’s a critical factor affecting lifetime of device parts, for example the wear of plain bearings in many rotational devices can affect the function and cause great damage to it. The presented paper deals with stress and contact pressure distribution simulated by the finite element method (FEM) and the development of a wear module for simulating sliding wear of materials. First the theory of wear is presented. The next section presents the development of an own wear module in MATLAB, which also deals as an interface between MATLAB and ABAQUS software. Finally the module is tested on a sliding wear testing problem which is simulated using ABAQUS and the simulation results are presented at the end.

Keywords: Finite element method, wear, sliding contact

Acknowledgement

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0736-12.

References

Paper number: M201534
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.

indexed on: http://www.scopus.com
Production Method of Implant Prototype of Knee-Joint Femoral Component

Josef Sedlak, Martin Slany, Zdenek Fiala, Ales Jaros
Department of Machining Technology, Institute of Manufacturing Technology, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 616 69, Czech Republic. E-mail: sedlak@fme.vutbr.cz, slany.m@fme.vutbr.cz, yfiala18@stud.fme.vutbr.cz, yjaros18@stud.fme.vutbr.cz

The paper deals with a design and construction of an implant prototype of a knee-joint femoral component with a complex shape mathematic description especially of functional (articulating) surfaces. The core of a technical solution labours under the thought of casing of femur distal part with a shell of certain thickness whereas a special area is used as a referential area defining an inner and outer shape of the shell. The area is marked, cropped and smoothed. It is the created area of the lower end of the patient femur respecting the overall curvature of the knee joint.

Within designing of the implant prototype of the femoral component of the knee-joint modern methods of getting CT data, their processing by CAD software called CATIA and subsequent post processing are applied.

The prototype implant of the femoral component of the knee joint is designed from processed CT data of the patient affected knee-joint (the femur distal part, a tibia proximal part). The 3D model of the implant prototype of the femoral component is created on the basis of data editing in CATIA software. The final 3D model is then located to the composition (a bone, the implant prototype) and using anchoring ribs it is fixed on the femur distal part.

Keywords: Knee-Joint, Implant Prototype, Femoral Component, Bone, CATIA

Acknowledgement

The research was supported and co-financed from the project called “Excellent young scientists at VUT University in Brno” – register number CZ.1.07/2.3.00/30.0039.

References

Paper number: M201535
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.
Setup System of Selective Roll Cooling Based on Profile Prediction in Aluminum Hot Strip Mill

Jian Shao, Chihuan Yao, Wenquan Sun Anrui He
National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, China.
E-mail: ustbshao@163.com

In aluminum strip production, profile formed in hot rolling is critical to flatness control in the subsequent cold rolling, and selective work roll cooling is marked by the flexible control of complex high-order shape defects. Therefore, a setup system of selective cooling is developed to achieve the whole cross-section profile control in hot rolling. It includes a real-time work roll thermal model based on finite difference method and a strip profile predictive model based on RBF network. A spray pattern is obtained using an iteration method, as the “basic pattern” for the setup, for the situation when roll thermal contour need to be maintained. Based on the predicted profile error, adjustment of the basic pattern is made by fuzzy inference to get the final setup spray pattern, under which the profile error can be reduced during the threading.

Keywords: Shape Control, Work Roll Cooling, Finite Difference Method, RBF Network.

Acknowledgement
This work was supported by the National Natural Science Foundation of China (No.51404021) and the Beijing Municipal Natural Science Foundation (No.3154035).

References
Comparison of the Continuous and Intermittent Relaxation Test

Vladimir Sleger, Cestmir Mizera
Faculty of Engineering, Czech University of Life Sciences Prague. Kamycka 129, 165 21 Praha 6 - Suchdol. Czech Republic. E-mail: sleger@tf.czu.cz, mizera@tf.czu.cz

The article presents the measurement results of the relaxation of long-term loaded compression springs manufactured out of non-alloy steel. The goal was to determine the differences between the interrupted and uninterrupted tests. During the relaxation test that lasted 5000 hr in a laboratory with a temperature of 22°C, initial shear stress set at a value of 30% of the ultimate tensile strength of the material, decreased the strength of the springs with a wire diameter of 1 mm by 3.6%, springs with a wire diameter of 3.15 mm by 2.5%, and springs with a wire diameter of 5 mm by 1.3%. The difference in the results was found in tests 16 times and 4 times interrupted to measure the current relaxation. The results of intermittent tests cannot be considered as relaxation values for statically loaded springs. Conversely, when determining the maximum tension of quasi-statically loaded springs with respect to the current relaxation, the uninterrupted relaxation tests cannot be used.

Keywords: Compression springs, Patented wire, Long-term test, Room temperature, Static loading

Acknowledgement

This paper was supported by the IGA, Project 2013:31130/1312/3105 (Mechanical properties of resilient elements of agricultural machines).

References

Microstructure and Mechanical Properties of the Forged Mg-Gd Alloy

Xu Sun¹, Zhanyi Cao¹, Shurong Sun², Yongbing Liu¹

¹Key Laboratory of Automobile Materials, Ministry of Education, and Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun, China. E-mail: sunxu_bi@aliyun.com.
²Brand School of Engineering and Technology, Changchun Vocational Institute of Technology, Changchun, China. Corresponding author: E-mail address: caozy@jlu.edu.cn (Zhanyi Cao)

The Mg-5.6Gd-0.6Y-0.2Zn-0.2Zr (wt. %) alloy was prepared by metal mold casting. Then the alloy was subjected to hot forging. The microstructure and mechanical properties of the solution-treated, hot-forged and aged alloy samples were studied. The effects of deformation processes on the microstructure and mechanical properties were discussed, and the strengthening mechanisms of alloy were also investigated. The results revealed that the coarse second phases distribute along the dendrite boundaries in the solution-treated alloy. After hot forging, the second phases were broken into small particles and the grains get uniformity. Tensile test results showed that the strength of alloy was greatly improved after hot deformation processes. The forged alloy showed remarkable age hardening response at aging temperature of 180°C. The peak hardness was obtained by the time of 72h. The ultimate tensile strength and yield strength of the peak-aged alloy were 275MPa, 181MPa at room temperature, and 209MPa, 127MPa at 300°C, respectively. The high mechanical properties were mainly attributed to the fine microstructure and fine dispersed metastable precipitates in the matrix.

Keywords: Mg-Gd alloy; Microstructure; Mechanical properties; Strengthening mechanisms

Acknowledgement
This work is supported by the “985 Project” of Jilin University, the Science and Technology Program of Jilin Province (2011105007), the Open Subject of State Key Laboratory of Rare Earth Resource Utilization (RERU201101), the Science and Technology Support Project of Jilin Province (20130305008GX) and the Science and Technology Support Project of Jilin Province (20140325003GX).

References
Research on Distribution of Residual Stresses of Cold Rolled Sheet Distorted Area Based on ANSYS

Wenquan Sun, Jian Shao, Anrui He, Pujun Hao
National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing, China. E-mail: wqsun18@gmail.com

Based on the value of longitudinal distribution of the residual stresses in the strip with the cold rolled strip in different forms under stress loading, this paper establishes a finite element model. According to the simulation analysis on different stress curve functions and under some coefficient combining conditions of different stress curve functions, it is discovered that the stress acting lengths and the features are completely different under the actions of even-degree and odd-degree stress functions, and under the even-degree function, the residual stresses are distributed evenly at the far end of the strip, and the length location of the point where the residual stresses tends to be stable on the strip are linearly related to the strip width; under the odd-degree function, the residual stresses are distributed linearly in the horizontal direction of the strip while without any changes along the strip length. According to the analysis results of the strip’s shear stress, a little strip shear stress is not enough to produce deformation. The result of this paper has profound guiding significance for cold-rolled strip flatness closed-loop control. Only with different control strategies for different flatness deviations after fitting, can the quality of the strip steel flatness be improved more effectively, thereby reducing the impact of the lag in flatness detection on the strip flatness control as far as possible.

Keywords: Cold Rolling, Stress Function, Residual Stress, Finite Element

Acknowledgement
This work is supported by Doctoral Program Foundation of Institutions of Higher Education of China (No. 20130006120024).

References

Effect of Impacts on Human Head

Martin Svoboda¹, Josef Soukup¹, Karel Jelen², Petr Kubový²
¹Faculty of production technology and management Jan Evangelista Purkyně University in Ústí nad Labem, Czech Republic, Na Okraji 1001, e-mail: svoboda@fvtm.ujep.cz
²Faculty of Psychical Education and Sport Charles University, Jose Mártího 31, Praha 6 – Veleslavín, e-mail: kubovy@ftvs.cuni.cz

The article deals with experimental measurements of force effects that direct blow develops taekwondo sportsman. Power effects are captured using a high speed camera. Experimental measurements have confirmed the results of many scientific papers that deal with the measurement of the force effects of combat sports athletes, etc. There are described some methods that are used in medicine and biomechanics to view internal organs or injury detection.

Keywords: biomechanics, impact, deformation, measurement, human head

Literature

indexed on: http://www.scopus.com

Properties of Adhesives Used for Connecting in Automotive Industry

Petr Valášek, Miroslav Müller
Faculty of Engineering, Czech University of Life Sciences Prague. Kamýcká 129, 165 21, Prague. Czech Republic. E-mail: valasekp@tf.czu.cz

An automotive industry belongs among the most important industrial branches in the Czech Republic as well as in Europe. An adhesive bonding technology is a method of connecting which is used in many industrial branches nowadays. It also plays its irreplaceable part in area of a construction of automobile bodies. The adhesive bonding is the method which is easily implemented among requirements of a serial production. A strength and a reliability of adhesive bonded parts of automobile bodies and other traffic means are key. That is why adhesives used for the adhesive bonding in the automotive industry are characterized by their increased strength and resistance (e.g. adhesives Betamate). The paper describes the cohesive and strength characteristics of these adhesives. It focuses on a tensile strength, a hardness and a shear strength depending on a thickness of used sheets of metal when an increased thickness of the sheet of metal decreases its plastic deformation and so it decreases a liability of the adhesive bond to peeling.

Keywords: Bonding, Epoxy resin, Lap-shear strength

Acknowledgement

This paper has been done when solving the grant IGA TF (No.: 2014:31140/1312/3133).

References

indexed on: http://www.scopus.com

Preparation of Ultra-Fine Grained Alloys Based on Fe-Al-Si And Ti-Al-Si Intermetallic Compounds by Powder Metallurgy Using the Mechanical Alloying

Jiří Vystrčil, Pavel Novák, Alena Michalcová
University of Chemistry and Technology, Prague, Department of Metals and Corrosion Engineering, Technická 5, 166 28 Prague 6, Czech Republic, E-mail: vystrcil.jiri@volny.cz; panovak@vscht.cz; michalca@vscht.cz

Alloys based on the intermetallic phases are presently considered to be very promising materials for demanding technological applications in a wide range of industries. The biggest disadvantage of intermetallics is their low toughness at room temperature. One of the way how to increase their plasticity and eliminate susceptibility to low temperature brittleness is preparing intermetallic phases with ultrafine grain structure. The paper describes the preparation of ultra-fine grained alloys based on intermetallic phases by mechanical alloying and subsequent compaction by the "Spark Plasma Sintering" (SPS). Influence of the individual alloy components on the preparation and mechanical properties of intermetallics alloys were studied. The basic mechanical properties at room and elevated temperatures, resistance to high temperature oxidation and thermal stability of alloys were measured.

Keywords: powder metalurgy, mechanical alloying, intermetallics, ultra-fine grained

Acknowledgement

This research was supported by Czech Science Foundation, project P108/12/G043.

References

Indexed on: http://www.scopus.com

Paper number: M201542
Copyright © 2015. Published by Manufacturing Technology. All rights reserved.
Study on Mechanical Properties of the Composite Resin Matrix Fiber Reinforced

Min Wen, JiXiang Luo
Faculty of Civil and Architectural Engineering, Nanchang Institute of Technology
Nanchang Jiangxi 330099, China E-mail: 16320576@qq.com; E-mail: 48260308@qq.com

Fiber reinforced polymer Resin matrix composites have the good performance, and it is widely used in various fields to release the impact load. Therefore, the study of stress and strain characteristics is quite useful to providing the reliable basis for the structural design. The tensile test is one of the important methods to detect the mechanic property of the material, which can be used to observe the deformation behavior of the material. Reinforced materials are often added to improve the mechanical properties of the composites, and characteristics and mechanical properties of composite materials will be obvious anisotropic. Damage behavior of resin matrix composite material with fiber reinforced is complex, and mechanical properties of it are quite difficult to obtain just through the experiments, so the finite element method becomes a useful tool to get the mechanical properties. In this paper, we developed the conventional finite element method to investigate the mechanical properties of composites material. The verification proves that the modified finite element method can get much accurate results.

Keywords: Mechanical property; Composites; Resin based material; Fiber reinforced.

References

indexed on: http://www.scopus.com

Design and Implement of Infrared Thermography Detection System Excited by Pulsed Flash Lamp

Zheng-wei YANG1, Qian Luo2, Gan TIAN1, *, Wei ZHANG1, Jie-tang ZHU1
1602 office, Xi’an Research Inst. of Hi-Tech, Xi’an, P.R. China, 710025. E-mail: yangzhengwei1136@163.com, *corresponding author: tiantian_8282@sina.com, zhangweihuaiyu@163.com, zhujtown@sohu.com
2The 41st Institute of Academy of China Aerospace Science and Technology Corporation National Key Laboratory of Combustion, Flow and Thermo-structure, Xi’an, P.R. China, 710025. E-mail: lq03303706@163.com

Detection system of infrared thermography technology was designed, taking a non-refrigeration focal plane infrared camera and the pulse flash heating system with high energy as the core. Combining with the performance parameters and structure features of the hardware equipment, integrated control system was designed. Meantime, the cover and reflector for the detection system were fabricated, which improved the uniformity and the utilization rate of energy for the thermal excitation source of the flash lamp. Based on the Delphi program, control, acquisition, processing and analysis system for the infrared image sequence were developed. And defect identification software was also researched which could implement the quantitative calculation and analysis for the parameters of defect size, location, perimeter, area and depth. Finally, experiments for metal and composite with flat bottom defects were carried out by the use of the detection system proposed in this study. The results show that the detection system has the advantages of well controllable performance, convenient operation, perfect detection effect, powerful image processing functions, which can meet the testing demand for engineering application.

Keywords: Pulsed flash lamp, Infrared thermography, Design of the detection system

Acknowledgement

This study is supported by the National Natural Science Foundation of China (Grant No. 51305447) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2013JM7021).

References

indexed on: http://www.scopus.com

Studies of Turbidity in the Ultrasonic/Ceramic Membrane Combined Process

JiLun Yao¹, Bin Xie¹, Yuzheng Lv²
¹Logistical Engineering University of PLA. Chongqing, 401311, China.
Email: yjl305@126.com, Email: xiebin8996@163.com
²Beijing Canbao Institute of Architectural Design. Beijing, 401311, China.
Email: hglhgl1@163.com.

The ultrasonic/ceramic membrane combined process was employed to have a better effect of the filtrated water quality. We set the ultrasonic frequency at 20 kHz and the corresponding power at 2kW. Innovatively we probed into different range of molar weight of organic matters in the filtrated water, and results showed that the ultrasonic/ceramic membrane combined process could change the distribution of micromolecule organic matters. We found that with the increasing of turbidity of raw water, the membrane flux decreased rapidly but the quality of filtrated water changed little. Studies on different range of molar weight showed that for the organic matters whose molar weight were below 1kD, higher turbidity had an optimistic effect on removing them while for those whose molar weight were above 1kD, the effect was reverse.

Keywords: Ultrasonic; ceramic membrane; molar weight

References

[16] WU KEHONG. (2007). Experiment of 50 nm inorganic ceramic membrane for removal result of turbidity and organic substance in surface water. In: Journal of PLA University of Science and Technology; Vol. 8, pp. 82-85. PLA University of Science and Technology press, NanJing.

http://journal.strojirenskatechnologie.cz/portal